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Critical and coincidence frequencies of panels are important in studying their behaviour
under acoustic excitation. Most spacecraft structural panels are of honeycomb sandwich
construction and many of them have face sheets made of composite material. The critical
and coincidence frequencies of such panels are discussed here. Expressions for critical and
coincidence frequencies of thick isotropic and thin as well as thick symmetric composite
panels are derived. It is shown that the orthotropic behaviour and transverse shear
flexibility of the panels affects the critical and coincidence frequencies. The critical
frequency of a typical composite honeycomb sandwich panel obtained using the above
expressions match well with experimental results.
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1. INTRODUCTION

When an infinite plate is excited, the frequency at which the speed of the free bending wave
becomes equal to the speed of acoustic wave in air is called the critical frequency [1]. The
critical frequency is particularly important when one deals with sound radiation from
structures. The sound radiation characteristics are highly dependent on whether the
excitation frequency is above or below the critical frequency. Also, the radiation efficiency
of a structure is very high near the critical frequency. Finite panels also show similar
behaviour.

When a structure is excited acoustically, the frequency at which the speed of the forced
bending wave in the structure and the speed of the free bending wave are equal is called
the coincidence frequency [1]. Sound transmission is highest near the coincidence
frequency. The sound transmission characteristics depend on whether the excitation
frequency is above or below the coincidence frequency.

The vibration response of a panel to a reverberant acoustic field is highest around the
critical frequency. Therefore, to obtain the response of a structure to acoustic excitation
it is necessary to know its critical frequency accurately. The information on the critical
frequency of the structure can be used in design if the response due to acoustics has to
be reduced. For example, the structure can be designed in such a way that its critical
frequency is beyond the range of frequencies in which the acoustic excitation is larger.

Thus, knowledge of critical and coincidence frequencies of a structure is essential to
study the structural–acoustic interaction. It may also be noted that these two parameters
are interrelated.
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The critical and coincidence frequencies of thin isotropic panels are discussed in detail
in the literature [1–3]. Many aerospace components are of honeycomb sandwich
construction. In such applications, transverse shear flexibility is expected to play an
important role in their behaviour at high frequencies, and a thick plate theory will be more
suitable. However, the critical and coincidence frequencies of thick panels are discussed
in the literature [4–6] only to a very limited extent. In reference [4], transverse shear
flexibility effect is included in the transmission loss expression, but an expression is not
suggested for the critical frequency with transverse shear flexibility. Narayanan and
Shanbag [5] have discussed coincidence frequencies of panels with transverse shear
flexibility. However, the expression for the coincidence frequency is not given in a
convenient and usable form. Hence, in practical situations in which the response of
honeycomb panels to acoustic excitation is to be obtained using Statistical Energy Analysis
(SEA), the geometric mean of two critical frequencies, one based on the total pure bending
of the panel and the other based on pure bending of the face sheet, is used [6]. In the above
calculations, the core shear flexibility is not included.

Most of the honeycomb sandwich panels encountered in aerospace structures have face
sheets made of fibrous composite material. Information on critical and coincidence
frequencies of such panels is necessary to gain a better understanding of their behaviour
under acoustic excitation. No results have been reported yet on critical and coincidence
frequencies of composite panels. A conventional procedure in such situations is to define
two critical frequencies[2, 4, 7] in two principal material directions, using the two
orthotropic flexural rigidity values. The geometric mean of the two frequencies is used as
the critical frequency [7]. Guyader and Lesueur [8] have discussed the transmission loss
of orthotropic panels but have not derived any expression for the critical frequencies.

Hence, there is an urgent need to obtain an expression for critical frequencies of panels
considering the orthotropic behaviour and transverse shear flexibility. In this paper, the
critical and coincidence frequencies of isotropic thick panels are discussed first. The above
parameters are then derived for thin as well as thick orthotropic panels. The influence of
transverse shear flexibility and the orthotropic behaviour on the above parameters is
discussed. The expressions are validated by experiments.

2. ISOTROPIC THIN PLATE

In this section we briefly present the expressions for the critical and coincidence
frequencies of isotropic plates. A basic procedure of obtaining these parameters is also
highlighted. Thus, this section provides a prelude to the subsequent sections in which these
expressions are derived for isotropic thick plates and orthotropic plates including
transverse shear effects.

The free vibration of a thin plate is governed by the equation

94w+(r/D)(12w/1t2)=0. (1)

The plate has a flexural rigidity of D and a mass per unit area of r. The co-ordinate
axes are shown in Figure 1. The panel is assumed to be in the X–Y plane. A list of symbols
used is given in Appendix A.

The solution for the infinite plate may be written as

w=Aej(vt− kxx− kyy), (2)

where kx and ky are the wavenumber components in the X and Y directions. They are
related by the expression k2

x + k2
y = k2, where k is the wavenumber. The wavenumber at

a frequency v is defined as k=v/c, where c is the speed of wave propagation. Hence,
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the wavenumber is a measure of the number of waves in unit length. For a thin plate,
substituting equation (2) in equation (1), k4

x +2k2
xk2

y + k4
y = rv2/D, and hence k4 = rv2/D.

From the above equations, the speed of a free bending wave, cb , for a thin plate can be
obtained as

c4
b =v2D/r. (3)

At the critical frequency, by definition, cb = c. Hence, the critical frequency, vcr in rad/s
for a thin plate, is given by

v2
cr = c4r/D. (4)

When a sound wave strikes the panel at an angle of incidence u (Figure 1), it produces
a trace wave in the plate, called a forced wave. The speed of this forced bending wave is
(c/sin u) [1, 3]. Coincidence occurs when the speed of the forced bending wave matches the
speed of the free bending wave. Hence the coincidence frequency vco can be shown to be

v2
co =(c4r/D) sin4 u. (5)

Using equation (4), the expression for coincidence frequency can be simplified as

v2
co =v2

cr/sin4 u. (6)

Equation (6) suggests that the coincidence frequency is directly related to the critical
frequency.

3. ISOTROPIC THICK PLATE

The free vibration of a thick plate is governed by the equation [9, 10]

94w+(r/D)(12w/1t2)− (r/N)(12{92w}/1t2)=0, (7)

where N is the shear rigidity of the plate. The above equation is based on Mindlin’s theory,
and is very accurate in representing the shear deformation in honeycomb sandwich panels.
For a honeycomb sandwich panel, having t and h as the thickness of the face sheets and
core, respectively, the shear rigidity is Gh{1+ (t/h)}2 where G is the shear modulus of the
core. The solution for the infinite plate is the same as equation (2). Substituting equation
(2) in the differential equation (7) and using a similar procedure as in the case of a thin
plate, the expression for the speed of free bending wave can be shown to be

c2
b =2N{r+(r2 + {4rN2/[v2D]})1/2}−1. (8)

Figure 1. The definition of the co-ordinate axes.
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The critical frequency can then be obtained as

v2
cr =(c4r/D)/{1− (c2r/N)}. (9)

The effect of transverse shear flexibility on the critical frequency can easily be understood
from Figure 2. In the above figure, the critical frequency is normalized with respect to
c4r/D, the critical frequency of a thin plate having the same flexural rigidity. From the
results, it is clear that the critical frequency increases with the transverse shear flexibility
of the panel. For a thin plate, i.e., when N is very large, v2

cr = c4r/D, which is the same
as equation (4).

It should be noted that if c2r/Ne 1, the critical frequency does not exist; i.e., at no
frequency is the speed of free bending wave speed equal to the speed of sound in air.
In such cases, the speed of the free bending wave is less than the speed of sound in
air.

In a similar way as was done for a thin plate, the coincidence frequency of the thick
plate can be shown to be

v2
co =(c4r/D)/(1− {c2r/N}/sin2 u)/sin4 u. (10)

Coincidence occurs only if c2r/NQ sin2 u. It can be seen that the coincidence frequency
cannot be obtained as v2

co =v2
cr/sin4 u. For thin panels (large values of N), equation (10)

converges to equation (5).

4. THIN COMPOSITE PANEL

The critical and coincidence frequencies of symmetric cross-ply laminates, neglecting
transverse shear effects, are discussed here. The equation for free vibration (thin plate
theory) [11] is

D11(14w/1x4)+2(D12 +2D66)(14w/1x21y2)+D22(14w/1y4)+ r(12w/1t2)=0. (11)

The solution for an infinite plate is

w=A ej(vt− kxx− kyy). (12)

Figure 2. The effect of transverse shear flexibility on the critical frequency of an isotropic plate.
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From equations (11) and (12),

D11k4
x +2(D12 +2D66)k2

xk2
y +D22k4

y = rv2. (13)

By definition, k2
x + k2

y = k2.
From equation (13), it can be shown that k is a function of v and kx or ky. Hence, at

a particular frequency one can have different values for wavenumbers and hence the wave
speed, depending on the values of kx or ky. In contrast, an isotropic plate has a particular
value of wavenumber as well as wave speed at a particular frequency.

In wavenumber plane (kx along the X-axis and ky along the Y-axis), the constant v curve
for an isotropic plate is an arc of a circle. The distance from the origin to a point on the
curve is the wavenumber (Figure 3) and is a constant for an isotropic plate. For an
orthotropic plate, the wavenumber varies with kx or ky.

Using a polar co-ordinate system (Figure 3), kx = r cos u, ky = r sin u and k2 = r2. For
an isotropic plate, r is a constant for a particular frequency, but for an orthotropic plate
r is a function of u (this u is different from the angle of incidence).

The value of r at a particular frequency as a function of u can be obtained from equation
(13) as

r4 = rv2/(D11 cos4 u+D22 sin4 u+2(D12 +2D66) sin2 u cos2 u). (14)

Equation (14) can be written as

r4 = (rv2/zD11D22)/(zD11/D22 cos4 u+zD22/D11 sin4 u+2a sin2 u cos2 u), (15)

where a=(D12 +2D66)/zD11D22. a is a parameter that represents the orthotropic
properties of the plate. For an isotropic plate, a=1.

A simplification of equation (15) can be carried out when D11 =D22 =D. This happens
in many practical situations. In such a case, the value of r is given by

r4 = (rv2/D)/(1− [(1− a)/2] sin2 (2u)). (16)

Here, a=(D12 +2D66)/D. For an isotropic plate, r4 = rv2/D.
From equation (16), it is clear that the wavenumber at a particular frequency depends

on u and the orthotropic parameter a. The above dependence is shown in Figure 4. Here
the wavenumber is normalized with respect to the wavenumber for an isotropic plate

Figure 3. The wavenumber plane.
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Figure 4. Variation of the wavenumber of a composite panel with the polar co-ordinate u of the wavenumber
plane.

having the same flexural rigidity. The above results can be classified into three cases
depending on the value of a.

(a) a=1. In this case, the plate is isotropic and the wavenumber at a particular
frequency is independent of u.

(b) aQ 1. In this case, the wavenumber is always greater than the wavenumber of the
equivalent isotropic plate, and is a maximum when u= p/4. The maximum value of r4 is
given by r4

max =(rv2/D)/({1+ a}/2). If the value of a is low, r4
max will be large. The

maximum value of r4
max is 2rv2/D when a=0.

(c) aq 1. In this case, the wavenumber is always less than the wavenumber of the
equivalent isotropic plate and is a minimum when u= p/4. The minimum value of r4 is
given by r4

min =(rv2/D)/({1+ a}/2).
Since for many composite panels (an example will be discussed later) the value of a is

very low (as low as 0·08), a large variation of wavenumber with u is expected and the
wavenumber is always greater than the wavenumber of an equivalent isotropic plate. At
a particular frequency, k4 can vary from rv2/D to 2rv2/D depending on the value of kx

or ky.
Since the occurrence of kx or ky cannot be defined deterministically, for further

discussions on wavenumber a probabilistic framework is used. Equation (16) can be
written as

r4{1− [(1− a)/2] sin2 (2u)}−(rv2/D)=0. (17)

Taking the expectation of equation (17),

r4g
p/2

0

{1− [(1− a)/2] sin2 (2u)}p(u) du−(rv2/D)=0, (18)

where p(u) is the probability density function for the occurrence of u (i.e., kx or ky ). While
carrying out the expectation operation, it should be considered that u is the only
independent variable and that r is a dependent variable.

An uniform probability density function can be assumed for the occurrence of u and
is an appropriate assumption for SEA applications. Hence,

p(u)= (2/p){U(u−0)−U(u−[p/2]), (19)
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where U is the unit step function. Using equation (19) for the probability density function
for the occurrence of u and performing the integral given in equation (18), the expected
value of r4 can be derived as

r4[(3+ a)/4]− (rv2/D)=0. (20)

From equation (20), the expected wavenumber for a thin orthotropic plate at a particular
frequency is

k4 = (rv2/D)/{(3+ a)/4}. (21)

For an isotropic plate, the above equation reduces to k4 = rv2/D.

4.1.   

Having obtained the expression for the wavenumber, the speed for the free bending wave
in an orthotropic thin plate can be obtained as

c4
b =(v2D/r){(3+ a)/4}. (22)

For an isotropic plate, the above equation converges to c4
b =v2D/r, which is the same as

equation (3).

4.2.  

Using a similar procedure as used for thin isotropic plate the critical frequency of a thin
orthotropic plate is

v2
cr =(c4r/D)/{(3+ a)/4}. (23)

For an isotropic plate the above equation reduces to v2
cr = c4r/D, which is the same as

equation (4). The dependence of the critical frequency on the orthotropic characteristics
of the panel are shown in Figure 5. The critical frequency is normalized with respect to
the critical frequency of the equivalent isotropic plate (having the same D). It can be seen
that orthotropic behaviour of the panel significantly affect the critical frequency. If aQ 1,
which happens in most of the cases, the critical frequency is higher than that of the
equivalent isotropic plate. The increase in critical frequency depends on the value of a;
the lower the value of a the higher the increase. If aq 1, the critical frequency is lower
than that of the equivalent isotropic plate.

Figure 5. The effect of orthotropic behaviour on the critical frequency.
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In the absence of equation (23), the practice is to define two critical frequencies,
v2

cr,x = c4r/D11 and v2
cr,y = c4r/D22 for orthotropic plates. These values correspond to the

bending wave speed when u=0 and u= p/2. The geometric mean of these two critical
frequencies is taken as the critical frequency of the plate. In such cases the effects of D12

and D66 are not considered.
In many practical cases, D11 =D22 =D, and in the conventional way v2

cr = c4r/D. By
comparing equation (23) it is clear that the actual critical frequency is influenced by the
parameter a. Since a is usually very small for composite panels, because D12 +2D66 is very
small compared to D, the conventional equations can under estimate the critical frequency
by 1·155 (1·33 on v2

cr ).

4.3.  

In a similar manner as was done for an isotropic plate, the coincidence frequency of
a thin orthotropic plate can be derived as

v2
co =(c4r/D)/{(3+ a)/4}/sin4 u. (24)

In this case, v2
co =v2

cr/sin4 u.

5. THICK COMPOSITE PANELS

The critical and coincidence frequencies of symmetric cross-ply laminates, considering
transverse shear effects, are discussed here. Many spacecraft structural elements follow this
construction. In this case the average shear angle is taken as the rotation of the transverse
plane due to shear (Mindlin’s theory). This formulation is very accurate in representing
the transverse shear deformation in honeycomb sandwich panels.

The free vibration of such panels is governed by the equation [12]

D11(14w/1x4)+2(D12 +2D66)(14w/1x21y2)+D22(14w/1y4)+ r(12w/1t2)

−(r/N)[12{D11(12w/1x2)+D22(12w/1y2)}/1t2 =0 (25)

Using a procedure similar to that used for thin orthotropic plates,

D11k4
x +2(D12 +2D66)k2

xk2
y +D22k4

y −(rv2/N)(D11k2
x +D22k2

y)− rv2 =0. (26)

In polar co-ordinates, equation (26) becomes

r4{D11 cos4 u+2(D12 +2D66) sin2 u cos2 u+D22 sin4 u}

−(rv2/N{D11 cos2 u+D22 sin2 u}r2 + rv2 =0. (27)

If D11 =D22 =D, equation (27) can be simplified as

r4{1− [(1− a)/2] sin2 (2u)}− r2(rv2/N)− (rv2/D)=0. (28)

As defined earlier, a=(D12 +2D66)/D.
On taking an expectation of equation (28),

r4 E[1− {(1− a)/2} sin2 (2u)]− (rv2/N)r2 − (rv2/D)=0. (29)

For an uniform probability density function for u, equation (29) can be reduced to

{(3+ a)/4}r4 − (rv2/N)r2 − (rv2/D)=0. (30)

Hence, the expected wavenumber at a particular frequency is given by

r2 = (1/2N){rv2 +v(r2v2 + [4rN2/D][(3+ a)/4])1/2}/{(3+ a)/4}. (31)
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Figure 6. The effect of shear flexibility on the critical frequency of a composite panel.

For thin plates, N is very large and hence r4 = (rv2/D)/[(3+ a)/4], which is the same as
equation (21).

5.1.   

Having obtained the expression for wavenumber, the speed of the bending wave can be
derived as

c2
b = {(3+ a)/4}2N{r+(r2 + [4rN2/(v2D)][(3+ a)/4])1/2}−1. (32)

The above equation can be shown to converge to the equation for isotropic panel for
a=1 and to the equation for a thin orthotropic panel when N:a.

5.2.  

In a manner similar to that done above, the critical frequency of a symmetric composite
panel can be shown to be

v2
cr =(c4r/D)/{[(3+ a)/4]− [c2r/N]}. (33)

The above equation may be compared with the critical frequency of a thin isotropic plate
given by equation (4), that for a thick isotropic plate given by equation (9) and that for
a thin orthotropic plate given by equation (23). With suitable mathematical operations,
equation (33) can be shown to converge to the above equations.

The dependence of the critical frequencies on the transverse shear flexibility and
orthotropic material properties is shown in Figure 6. It can be seen from the above results
that the critical frequencies of isotropic as well as composite panels increase with transverse
shear flexibility. Orthotropic behaviour increases the critical frequency further (if aQ 1).

The critical frequency does not exist if (c2r/N)e ([3+ a]/4). A similar situation also
exists for isotropic thick plates. It may be noted that thin plates (isotropic or orthotropic)
always have critical frequencies, but thick plates have critical frequencies under certain
conditions only.

5.3.  

When the plate is subjected to an acoustic field at an angle of incidence u, the coincidence
frequency can be obtained from equation (33) by using an approach similar to that used
earlier. The coincidence frequency can be shown to be

v2
co =(c4r/D)/{[(3+ a)/4]− [(c2r/N)/sin2 u]}/sin4 u. (34)
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In this case the coincidence frequency cannot be obtained as v2
co =v2

cr/sin4 u. Coincidence
occurs only if c2r/NQ [{3+ a}/4] sin2 u.

It is interesting to compare equation (34) with the coincidence frequencies for thin
isotropic plates, thick isotropic plates and thin orthotropic plates, which are given by
equations (5), (10) and (24) respectively.

It can be seen that v2
co =v2

cr/sin4 u is valid only for thin (isotropic or orthotropic) plates
and is not valid for thick plates. Thin plates always have coincidence frequencies, but thick
plates have coincidence frequencies only under certain conditions.

6. THE CRITICAL FREQUENCY OF A TYPICAL COMPOSITE PANEL

In the absence of the equations derived here for the critical frequencies of composite
panels, one would be using the corresponding equations for isotropic plates. It is
interesting to compare these values for a practical case. For this, a honeycomb sandwich
panel, which is typical of a spacecraft panel, is taken as an example.

6.1.    

The properties of the panel are as follows: dimensions, 2·15×1·80 m; area, 3·87 m2;
mass, 10·918 kg; face sheet thickness, 0·2 mm; face sheet material, two layers of (0/90)
CFRP; core material, aluminium honeycomb; core thickness, 18 mm; core density,
16 kg/m3; core shear modulus, 8·158×107 N/m2.

Each CFRP layer has the following properties: Young’s modulus along fibre direction,
30×1010 N/m2; Young’s modulus along transverse direction, 0·607×1010 N/m2; major
Poisson ratio, 0·346; shear modulus, 0·5×1010 N/m2.

The following structural properties of the panel can be derived from the properties of
the individual layer [11]. D11 =5135·27 N m, D22 =5028·02 N m, D12 =69·74 N m,
D66 =165·63 N m, and N=15·01×105 N/m.

6.2.  

Critical frequencies are obtained for the four cases discussed above. The speed of sound
in air is taken as 343·0 m/s.

The critical frequency of the panel is 595 Hz, taking into account the orthotropic
behaviour of the face sheets and the core shear flexibility. Here, D11 is approximately equal
to D22 and their geometric mean is used as D. If core shear flexibility is not considered,
the estimated critical frequency is 503 Hz. The critical frequency obtained by assuming the
face sheet to be isotropic but considering the core shear flexibility is 500 Hz. For this, the
Young’s modulus of the face sheet is assumed to be 13·5×1010 N/m2, so that the flexural
rigidity of the isotropic panel is the same as the geometric mean of D11 and D22 of the
composite panel. The Poisson ratio is taken as 0·346, which is the major Poisson ratio of
the CFRP face sheet. If the core shear flexibility is also neglected, the estimated frequency
is 441 Hz.

From the above results, it is clear that both the orthotropic behaviour of the face sheet
and the core shear flexibility should be considered to obtain the critical frequency. In the
absence of the expression derived here, the critical frequency would be estimated as 441 Hz
instead of 595 Hz.

6.3.  

To validate the expression derived, the critical frequency of the above panel is obtained
experimentally. Here, the critical frequency is obtained in an indirect way. In this method
the total loss factor, which is the sum of dissipation loss factor and radiation loss factor,
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of the panel is obtained. Generally, the dissipation loss factor decreases with frequency.
On the other hand, the radiation loss factor is very low below the critical frequency of
the panel and is very large near the critical frequency. Hence, the total loss factor suddenly
increases to a large value near the critical frequency. This behaviour is used here to obtain
the critical frequency of the panel.

To obtain the total loss factor, the panel is mechanically excited using shaker systems.
As per the energy balance, the average power input to the panel is equated to the power
dissipated. The power dissipated, pdiss, at a frequency v, is given by

pdiss = hvM�v2�x, (35)

where h is the loss factor and M is the total mass of the panel. The panel is assumed to
be of uniform mass distribution. Any local mass concentration should be neglected. In
equation (35), �v2�x is the spatial average value of the mean square value of the velocity
of the panel. From the above energy balance, Clarkson [13] has shown that the loss factor
of the panel having the modal density n( f ) at a frequency f is

h=F2(t)n( f )/{8pfM2�v2�x}, (36)

where F2(t) is the mean square value of the exciting force.
The panel used for the experiment is the same as the one described earlier. The panel

was mounted to a fixture at six locations, called hold down points. The fixture in turn was
mounted on a seismic mass. The test set-up is shown in Figure 7.

In the present experiment, the panel was excited at one point. To obtain the dissipated
power, the acceleration responses of the panel were measured at three locations. The above
locations and the driving point are shown in Figure 8. Responses are measured using very
light accelerometers, having a mass less than 3 g, to avoid the error due to accelerometer
mass. To obtain the power dissipated, the response at the driving point is not taken into

Figure 7. A view of the test set-up.
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Figure 8. The accelerometer (W) and driving point (×) locations.

account [14]. The panel is excited using broadband random excitation with 162·76 Hz
resolution. This very low value of resolution was selected to avoid frequency averaging
[15].

From measured values of the driving force and response accelerations, the loss factor
is calculated using equation (36). For the above calculation, modal density is obtained
using the expression derived for composite honeycomb sandwich panels [12]. It is also to
be noted that even in the lowest frequency band there are nine modes, which are sufficient
for statistical accuracy. The total loss factor thus obtained is shown in Figure 9.

The results clearly show that the critical frequency of the panel lies in the 651·04 Hz
band. The estimated critical frequency of the panel is 595 Hz. The experimental results
match very well with the estimated critical frequency. The reliability of the results could
be improved by using many driving point positions. The present results with one driving

Figure 9. The measured total loss factor of the panel.
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point are quite adequate since the driving point is located at random, not at any symmetric
point, and there are more than nine modes in all the frequency bands [16]. In the absence
of the expressions derived here, i.e., neglecting core shear flexibility and orthotropic
behaviour, the critical frequency would have been estimated to be at 441 Hz, which can
cause significant error in the estimated responses of these panels to acoustic excitation.

7. CONCLUSIONS

Expressions for critical and coincidence frequencies for thick isotropic panels and thin
as well as thick composite panels are derived. For composite panels these frequencies are
to be obtained in a statistical framework. It is seen that all thin panels have critical and
coincidence frequencies, but thick panels have critical and coincidence frequencies under
certain conditions only. For thin panels, coincidence frequencies are proportional to
critical frequencies, but for thick panels they are not related by a simple function.
The critical frequency increases with the transverse shear flexibility of the panel. The
orthotropic nature of the panel has a significant influence on the critical frequency. The
critical frequency of a typical composite honeycomb sandwich panel is obtained
experimentally. The experimental results match very well with the critical frequency
predicted using the present expression. If the transverse shear flexibility and the orthotropic
nature of the panel are not considered there can be considerable error in the estimated
critical frequencies.
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APPENDIX A: LIST OF SYMBOLS

c speed of sound in air
cb speed of the bending wave
D11, D22, D12, D66 flexural rigidity values of

the laminate
kx , ky , k wavenumbers
p(u) probability of occurrence of

u
N shear rigidity of the panel
r, u polar co-ordinates
rmax maximum value of r
rmin minimum value of r
U unit step function
w displacement normal to the

panel
a parameter representing or-

thotropic properties of the
panel

v frequency, in rad/s

vco coincidence frequency, in
rad/s

vcr critical frequency, in rad/s
r mass per unit area of the

panel
u angle of incidence
t thickness of face sheet
h thickness of the core
G shear modulus of core
F2(t) mean square value of force
n( f ) modal density at frequency

f
M mass of the panel
h loss factor
pdiss mean power dissipated
q2 mean square value of vel-

ocity
� � ensemble average


